Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenotypic Expression and Stability in a Large-Scale Field Study of Genetically Engineered Poplars Containing Sexual Containment Transgenes.

Identifieur interne : 000D48 ( Main/Exploration ); précédent : 000D47; suivant : 000D49

Phenotypic Expression and Stability in a Large-Scale Field Study of Genetically Engineered Poplars Containing Sexual Containment Transgenes.

Auteurs : Amy L. Klocko [États-Unis] ; Haiwei Lu [États-Unis] ; Anna Magnuson [États-Unis] ; Amy M. Brunner [États-Unis] ; Cathleen Ma [États-Unis] ; Steven H. Strauss [États-Unis]

Source :

RBID : pubmed:30123794

Abstract

Genetic engineering (GE) has the potential to help meet demand for forest products and ecological services. However, high research and development costs, market restrictions, and regulatory obstacles to performing field tests have severely limited the extent and duration of field research. There is a notable paucity of field studies of flowering GE trees due to the time frame required and regulatory constraints. Here we summarize our findings from field testing over 3,300 GE poplar trees and 948 transformation events in a single, 3.6 hectare field trial for seven growing seasons; this trial appears to be the largest field-based scientific study of GE forest trees in the world. The goal was to assess a diversity of approaches for obtaining bisexual sterility by modifying RNA expression or protein function of floral regulatory genes, including LEAFY, AGAMOUS, APETALA1, SHORT VEGETATIVE PHASE, and FLOWERING LOCUS T. Two female and one male clone were transformed with up to 23 different genetic constructs designed to obtain sterile flowers or delay onset of flowering. To prevent gene flow by pollen and facilitate regulatory approval, the test genotypes chosen were incompatible with native poplars in the area. We monitored tree survival, growth, floral onset, floral abundance, pollen production, seed formation and seed viability. Tree survival was above 95%, and variation in site conditions generally had a larger impact on vegetative performance and onset of flowering than did genetic constructs. Floral traits, when modified, were stable over three to five flowering seasons, and we successfully identified RNAi or overexpression constructs that either postponed floral onset or led to sterile flowers. There was an absence of detectable somaclonal variation; no trees were identified that showed vegetative or floral modifications that did not appear to be related to the transgene added. Surveys for seedling and sucker establishment both within and around the plantation identified small numbers of vegetative shoots (root sprouts) but no seedlings, indicative of a lack of establishment of trees via seeds in the area. Overall, this long term study showed that GE containment traits can be obtained which are effective, stable, and not associated with vegetative abnormalities or somaclonal variation.

DOI: 10.3389/fbioe.2018.00100
PubMed: 30123794
PubMed Central: PMC6085431


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phenotypic Expression and Stability in a Large-Scale Field Study of Genetically Engineered Poplars Containing Sexual Containment Transgenes.</title>
<author>
<name sortKey="Klocko, Amy L" sort="Klocko, Amy L" uniqKey="Klocko A" first="Amy L" last="Klocko">Amy L. Klocko</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Haiwei" sort="Lu, Haiwei" uniqKey="Lu H" first="Haiwei" last="Lu">Haiwei Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Magnuson, Anna" sort="Magnuson, Anna" uniqKey="Magnuson A" first="Anna" last="Magnuson">Anna Magnuson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30123794</idno>
<idno type="pmid">30123794</idno>
<idno type="doi">10.3389/fbioe.2018.00100</idno>
<idno type="pmc">PMC6085431</idno>
<idno type="wicri:Area/Main/Corpus">000C99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C99</idno>
<idno type="wicri:Area/Main/Curation">000C99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C99</idno>
<idno type="wicri:Area/Main/Exploration">000C99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phenotypic Expression and Stability in a Large-Scale Field Study of Genetically Engineered Poplars Containing Sexual Containment Transgenes.</title>
<author>
<name sortKey="Klocko, Amy L" sort="Klocko, Amy L" uniqKey="Klocko A" first="Amy L" last="Klocko">Amy L. Klocko</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Haiwei" sort="Lu, Haiwei" uniqKey="Lu H" first="Haiwei" last="Lu">Haiwei Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Magnuson, Anna" sort="Magnuson, Anna" uniqKey="Magnuson A" first="Anna" last="Magnuson">Anna Magnuson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in bioengineering and biotechnology</title>
<idno type="ISSN">2296-4185</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genetic engineering (GE) has the potential to help meet demand for forest products and ecological services. However, high research and development costs, market restrictions, and regulatory obstacles to performing field tests have severely limited the extent and duration of field research. There is a notable paucity of field studies of flowering GE trees due to the time frame required and regulatory constraints. Here we summarize our findings from field testing over 3,300 GE poplar trees and 948 transformation events in a single, 3.6 hectare field trial for seven growing seasons; this trial appears to be the largest field-based scientific study of GE forest trees in the world. The goal was to assess a diversity of approaches for obtaining bisexual sterility by modifying RNA expression or protein function of floral regulatory genes, including
<i>LEAFY, AGAMOUS, APETALA1, SHORT VEGETATIVE PHASE</i>
, and
<i>FLOWERING LOCUS T</i>
. Two female and one male clone were transformed with up to 23 different genetic constructs designed to obtain sterile flowers or delay onset of flowering. To prevent gene flow by pollen and facilitate regulatory approval, the test genotypes chosen were incompatible with native poplars in the area. We monitored tree survival, growth, floral onset, floral abundance, pollen production, seed formation and seed viability. Tree survival was above 95%, and variation in site conditions generally had a larger impact on vegetative performance and onset of flowering than did genetic constructs. Floral traits, when modified, were stable over three to five flowering seasons, and we successfully identified RNAi or overexpression constructs that either postponed floral onset or led to sterile flowers. There was an absence of detectable somaclonal variation; no trees were identified that showed vegetative or floral modifications that did not appear to be related to the transgene added. Surveys for seedling and sucker establishment both within and around the plantation identified small numbers of vegetative shoots (root sprouts) but no seedlings, indicative of a lack of establishment of trees via seeds in the area. Overall, this long term study showed that GE containment traits can be obtained which are effective, stable, and not associated with vegetative abnormalities or somaclonal variation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30123794</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2296-4185</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in bioengineering and biotechnology</Title>
<ISOAbbreviation>Front Bioeng Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Phenotypic Expression and Stability in a Large-Scale Field Study of Genetically Engineered Poplars Containing Sexual Containment Transgenes.</ArticleTitle>
<Pagination>
<MedlinePgn>100</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fbioe.2018.00100</ELocationID>
<Abstract>
<AbstractText>Genetic engineering (GE) has the potential to help meet demand for forest products and ecological services. However, high research and development costs, market restrictions, and regulatory obstacles to performing field tests have severely limited the extent and duration of field research. There is a notable paucity of field studies of flowering GE trees due to the time frame required and regulatory constraints. Here we summarize our findings from field testing over 3,300 GE poplar trees and 948 transformation events in a single, 3.6 hectare field trial for seven growing seasons; this trial appears to be the largest field-based scientific study of GE forest trees in the world. The goal was to assess a diversity of approaches for obtaining bisexual sterility by modifying RNA expression or protein function of floral regulatory genes, including
<i>LEAFY, AGAMOUS, APETALA1, SHORT VEGETATIVE PHASE</i>
, and
<i>FLOWERING LOCUS T</i>
. Two female and one male clone were transformed with up to 23 different genetic constructs designed to obtain sterile flowers or delay onset of flowering. To prevent gene flow by pollen and facilitate regulatory approval, the test genotypes chosen were incompatible with native poplars in the area. We monitored tree survival, growth, floral onset, floral abundance, pollen production, seed formation and seed viability. Tree survival was above 95%, and variation in site conditions generally had a larger impact on vegetative performance and onset of flowering than did genetic constructs. Floral traits, when modified, were stable over three to five flowering seasons, and we successfully identified RNAi or overexpression constructs that either postponed floral onset or led to sterile flowers. There was an absence of detectable somaclonal variation; no trees were identified that showed vegetative or floral modifications that did not appear to be related to the transgene added. Surveys for seedling and sucker establishment both within and around the plantation identified small numbers of vegetative shoots (root sprouts) but no seedlings, indicative of a lack of establishment of trees via seeds in the area. Overall, this long term study showed that GE containment traits can be obtained which are effective, stable, and not associated with vegetative abnormalities or somaclonal variation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Klocko</LastName>
<ForeName>Amy L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Haiwei</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Magnuson</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brunner</LastName>
<ForeName>Amy M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Cathleen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Bioeng Biotechnol</MedlineTA>
<NlmUniqueID>101632513</NlmUniqueID>
<ISSNLinking>2296-4185</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">RNAi</Keyword>
<Keyword MajorTopicYN="N">biosafety</Keyword>
<Keyword MajorTopicYN="N">dominant negative mutations</Keyword>
<Keyword MajorTopicYN="N">gene flow</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30123794</ArticleId>
<ArticleId IdType="doi">10.3389/fbioe.2018.00100</ArticleId>
<ArticleId IdType="pmc">PMC6085431</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Oct 01;8(10):e75291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2006;67:317-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17027684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Jul;25(7):660-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1000-1021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28079940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):1130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22904164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Jan;31(1):225-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22009051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 23;6:21934</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26902398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2013 Oct;22(5):973-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23543108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Sep;27(6):581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11576441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jan 13;12(1):e0170201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28085955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2016 Sep 8;34(9):918-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27606454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):1846-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Sep;13(7):962-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25641517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(3):235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 6;292(5514):34-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11294204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 Apr;33(4):326-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25850045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Mar;193(4):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22221193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jun;12(6):871-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10852934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Jul;26(7):977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17310333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2008 Dec;6(9):887-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19548343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Oct 12;377(6549):495-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7566146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2000 Nov;48(11):5243-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11087467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Mar;189(4):1096-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21158867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1993 Mar;12(5):245-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197150</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Klocko, Amy L" sort="Klocko, Amy L" uniqKey="Klocko A" first="Amy L" last="Klocko">Amy L. Klocko</name>
</region>
<name sortKey="Brunner, Amy M" sort="Brunner, Amy M" uniqKey="Brunner A" first="Amy M" last="Brunner">Amy M. Brunner</name>
<name sortKey="Lu, Haiwei" sort="Lu, Haiwei" uniqKey="Lu H" first="Haiwei" last="Lu">Haiwei Lu</name>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
<name sortKey="Magnuson, Anna" sort="Magnuson, Anna" uniqKey="Magnuson A" first="Anna" last="Magnuson">Anna Magnuson</name>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30123794
   |texte=   Phenotypic Expression and Stability in a Large-Scale Field Study of Genetically Engineered Poplars Containing Sexual Containment Transgenes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30123794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020